If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-34=0
a = 2; b = 4; c = -34;
Δ = b2-4ac
Δ = 42-4·2·(-34)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12\sqrt{2}}{2*2}=\frac{-4-12\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12\sqrt{2}}{2*2}=\frac{-4+12\sqrt{2}}{4} $
| 6(2y+8)=100 | | -4(x+1)+6x=34 | | 180=(4x-25x)+(3x+18) | | n-29=-28 | | 2,5^4x-1=-2,5 | | −4=11+6z | | (2,5)^(4x-1)=-2,5 | | 8x-5x+165=8x+75 | | 25+s/4=10 | | 5a+8=11 | | a=2-10 | | 200.96=12.56r^2 | | (2,5)^4x-1=-2,5 | | 15-h/20=19 | | 5*4=x*x+8 | | (x)(x-7)(x-14)=0 | | 15-c/4=17 | | 1+2x=53 | | 2+3x=53 | | 58=23w | | 9w-6=-36 | | -16x^2+151x-88=0 | | 5x+3=2x-6x | | 3^x+5=(1/9)^2x+3 | | 6xx=7.5 | | 12+44/x=100 | | 4^-x+6=1 | | 32^2x-1=112 | | 6w=0.75 | | (-5=7i)-(12-6i)=-17+i | | -16x^2=-64 | | 25*x=55*25 |